## CHEMISTRY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

## Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

| Question | Answer | Marks |
| :---: | :---: | :---: |
| 1(a)(i) | $(28 \times 0.922)+(29 \times 0.047)+(30 \times 0.031)=28.11$ | 1 |
| 1(a)(ii) | $\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$ | 1 |
| 1(a)(iii) |  | 1 |
|  | bond angle = 109.5 | 1 |
| 1(a)(iv) | $\mathrm{SiO}_{2}$ | 1 |
|  | $\mathrm{SiO}_{2}$ is giant covalent/molecular but $\mathrm{SiCl}_{4}$ is simple molecular/covalent | 1 |
| 1(b)(i) | $2 \mathrm{~A}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{AO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ <br> correct formula balanced equation | $\begin{array}{ll}  & \mathbf{2} \\ 1 & \\ 1 & \end{array}$ |
| 1(b)(ii) | giant ionic | 1 |


| Question | Answer |  |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2(a) | enthalpy change | positive | negative | either positive or negative | 2 |
|  | electron affinity |  |  | $\checkmark$ |  |
|  | enthalpy change of atomisation | $\checkmark$ |  |  |  |
|  | enthalpy change of ionisation | $\checkmark$ |  |  |  |
|  | lattice enthalpy |  | $\checkmark$ |  |  |
| 2(b)(i) | the second electron is removed from a (more) positively charged ion |  |  |  | 1 |
| 2(b)(ii) | $\Delta H_{6}$ is lattice (energy/enthalpy) AND $\Delta H_{7}$ is (energy/enthalpy of) formation |  |  |  | 1 |
| 2(c) | the electron affinity becomes less exothermic/negative down the Group 17 |  |  |  | 1 |
|  | electron affinity depends (mainly) on the electron-nucleus distance which increases down Group 17 |  |  |  | 1 |
| 2(d) | M1 correct use of $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ |  |  |  | 1 |
|  | $\mathrm{M} 2 \Delta \mathrm{~S}=26.9-(32.7+102.5)=-108.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \mathrm{OR}-0.1083 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$ |  |  |  | 1 |
|  | M3 $\Delta \mathrm{G}=-602-(298 \times(-0.1083))=-570$ |  |  |  | 1 |
|  | M4 units: $\mathrm{kJ} \mathrm{mol}^{-1}$ |  |  |  | 1 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 3(a)(i) | A - $\mathrm{H}_{2}, 1 \mathrm{~atm}$ <br> B - platinum <br> C - $1 \mathrm{moldm}^{-3} \mathrm{H}^{+} / \mathrm{HCl}$ etc. <br> D - salt bridge $/ \mathrm{KNO}_{3}$ etc. <br> E - platinum <br> F - $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}$ AND $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{3+}$ | 3 |
| 3(a)(ii) | positive electrode is (Pt) on RHS AND electrons flow clockwise | 1 |
| 3(b) | cell potential is $0.77-0.34=(+) 0.43(\mathrm{~V})$ | 1 |
| 3(c)(i) | electrode potential would become more negative as equilibrium shifts to left/explanation in terms of the Nernst equation | 1 |
| 3(c)(ii) | $\begin{aligned} E & =-0.41+(0.059 / 1) \log \left[\mathrm{Cr}^{3+}\right] /\left[\mathrm{Cr}^{2+}\right] \\ & =-0.41+0.059 \log 4.0 \end{aligned}$ | 1 |
|  | $=-0.37(\mathrm{~V})$ | 1 |


| Question | Answer |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 4(a)(i) | experiments 1 and 2: doubling [ $\mathrm{ClO}_{2}$ ] quadruples the rate, so second order |  |  | 1 |
|  | experiments 2 and 3: doubling $\left[\mathrm{OH}^{-}\right]$doubles the rate, so first order |  |  | 1 |
|  | rate equation $=k\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right]$ |  |  | 1 |
| 4(a)(ii) | from experiment t $2: 9.34 \times 10^{-4}=k\left(2.50 \times 10^{-2}\right)^{2} \times 1.30 \times 10^{-3}$ $k=1.15 \times 10^{3}$ |  |  | 1 |
|  | units: $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ |  |  | 1 |
| 4(b)(i) | heterogeneous catalysts are in different physical state from the reactants AND homogeneous catalysts are in the same physical state as the reactants |  |  | 1 |
| 4(b)(ii) | catalysed reaction | heterogeneous | homogeneous | 2 |
|  | manufacture of ammonia in the Haber process | $\checkmark$ |  |  |
|  | removal of nitrogen oxides from car exhausts | $\checkmark$ |  |  |
|  | oxidation of sulfur dioxide in the atmosphere |  | $\checkmark$ |  |
| 4(c)(i) | $\begin{aligned} & 2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\ & \text { correct } \mathrm{Mn}:\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \text { ratio } \\ & \text { rest of equation } \end{aligned}$ |  |  | $\begin{array}{ll}  & \mathbf{2} \\ 1 & \\ 1 & \end{array}$ |
| 4(c)(ii) | first section: flatter second section: steeper, before flattening |  |  | $\begin{array}{ll}  & \mathbf{2} \\ 1 & \\ 1 & \end{array}$ |


| Question |  | Answer | Marks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| , $4(\mathrm{~d})(\mathrm{i})$ |  |  |  |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 5(a)(i) | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Cl} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ | 1 |
|  | $\mathrm{AlCl}_{3}+$ heat | 1 |
| 5(a)(ii) | (UV) light | 1 |
| 5(a)(iii) |  | 1 |
| 5(a)(iv) | ammonia/ $\mathrm{NH}_{3}$ | 1 |
|  | heat in sealed tube/ heat under pressure | 1 |
| 5(b) | $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NH}_{3}^{+}+\mathrm{H}_{2} \mathrm{O}$ | 1 |
| 5(c) | in compound $\mathbf{H}$, the alkyl groups are electron donating/ have a positive inductive effect, so it is more basic than $\mathrm{NH}_{3}$ | 1 |
|  | in phenylamine, the lone pair (of N ) is delocalised over the aryl group/benzene ring, so phenylamine is less basic than $\mathrm{NH}_{3}$ | 1 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 6(a)(i) |  | 1 |
| 6(a)(ii) | $\begin{aligned} & N i \\ & \left.N i^{3+}:\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 3 d^{8} 4 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 3 d^{7} \\ & \end{aligned}$ | 1 |
| 6(b)(i) | $\square \square$  $\square \square$ <br> $\square \square$ $\square \square$  <br>  $\square \square \square$ <br> octahedral <br> complex isolated ion <br> tetrahedral <br> complex   | 1 |
| 6(b)(ii) | energy/photon is absorbed in the visible region/light | 1 |
|  | electron jumps from the lower to the upper energy level/is excited | 1 |
| 6(b)(iii) | different frequency/wavelength of light are absorbed by the two complexes OR <br> different size of energy gap | 1 |
| 6(c) | colour of solution: green | 1 |
|  | explanation: because the solution absorbs most strongly in the blue AND red regions | 1 |
| 6(d)(i) |   | 2 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 6(d)(ii) | cis-trans/geometrical | 1 |
| 6(e)(i) |   | 2 |
| 6(e)(ii) | optical | 1 |
| 6(f)(i) | $K_{\text {stab }}=\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}\right] /\left(\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}\right)$ | 1 |
| 6 (f)(ii) | $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ would be formed because it is much more stable/ $K_{\text {stab }}$ is much greater OR in the presence of both ligands the overall equilibrium $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \rightleftharpoons\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightleftharpoons\left[\mathrm{Ni}(e n)_{3}\right]^{2+}$ would shift right | 1 |
| 6(f)(iii) | cis-trans isomers identified | 1 |
|  | two cis isomers identified | 1 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 7(a) |  | 1 |
| 7(b)(i) | $\mathrm{H}^{+}(\mathrm{aq})+$ heat | 1 |
| 7(b)(ii) | hydrolysis | 1 |
| 7(b)(iii) | $\mathrm{CH}_{3} \mathrm{OH}$ | 1 |
| 7(c)(i) | white precipitate | 1 |
| 7(c)(ii) | $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{NNa}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ | 2 |
| 7(d)(i) | no change / colour remains orange | 1 |
| 7(d)(ii) |  <br> amide bond displayed two repeat units | 2 |
| 7(e)(i) | seven | 1 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 7(e)(ii) |  | 1 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 8(a) | oxidation of $-\mathrm{OH} /$ alcohol to $\mathrm{C}=\mathrm{O} /$ ketone / carbonyl | 1 |
| 8(b)(i) | dehydration/elimination | 1 |
| 8(b)(ii) | heat with $\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{OR}$ heat with $\mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$ | 1 |
| 8(b)(iii) |  | 2 |
| 8(c) | phenol | 1 |
|  | ketone | 1 |


| Question | Answer | Marks |
| :---: | :---: | :---: |
| 9(a)(i) | $\mathrm{n}=100 \times(\mathrm{M}+1) /(1.1 \times M)=100 \times 3.4 /(1.1 \times 33.9)=9.1$ | 1 |
|  | hence $\underline{9}$ carbons atoms | 1 |
| 9(a)(ii) | $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ | 1 |
| 9(a)(iii) | ( $150-119=31$ ), hence fragment is $\mathrm{CH}_{3} \mathrm{O}$ | 1 |
| 9(b) | V is $\mathrm{C}=\mathrm{O}$ AND W is $\mathrm{C}-\mathrm{O}$ | 1 |
| 9(c)(i) | $\delta 3.9$ is $\mathbf{C H}$ or alkyl/ $\mathrm{CH}_{3}$ next to oxygen AND $87.2-7.9$ is $\mathbf{C H} /$ aryl hydrogens | 1 |
| 9(c)(ii) | alkyl H next to $\mathrm{C}=\mathrm{O}$ AND alkyl H next to aryl ring | 1 |
| 9(c)(iii) | none of the functional groups in $\mathbf{T}$ contains a labile proton/ $\mathbf{T}$ does not contain - OH or -NH groups. | 1 |
| 9(d) |   | 2 |

